a framework for scintillation in nanophotonics

Z. Wu, L. Chen, P. Yousefi, S. G. Johnson, P. Biagioni, T. R. Harvey, T. Cazimajou, To start, we develop a unified and ab initio theory of nanophotonic scintillators that accounts for the key aspects of scintillation: the energy loss by high-energy particles, N. A. Mortensen, S. J. Wolf, This material is also, in part, based on work supported by the Air Force Office of Scientific Research under awards FA955020-10115 and FA955021-10299. K. Cui, B. Hommez, H. Zohrabian, and L. J. Wong, Meth. Z. Zhu, , Enhanced light extraction of plastic scintillator using large-area photonic crystal structures fabricated by hot embossing, A. Knapitsch, Particle detectors 21%. A. Gorlach, S. Y. J. Zhu, S. Fan, , Design of a multichannel photonic crystal dielectric laser accelerator, S. Molesky, Y. Gao, T. Dan, The authors would like to thank Nikolay I. Zheludev, Kevin MacDonald, and Liang Jie Wong for their helpful comments on the review. B. Liu, Y. Yang, A. Karnieli, M. Kociak, and B. Maes, H. C. Chang, N. Talebi, , Electrons generate self-complementary broadband vortex light beams using chiral photon sieves, Spectral interferometry with electron microscopes, S. Yamaguti, O. Boine-Frankenheim, , Design of a scalable integrated nanophotonic electron accelerator on a chip, Vacuum packaging at the wafer level for the monolithic integration of MEMS and CMOS, M. Behnam, H. Loureno-Martins, T. Matsumoto, and K. F. MacDonald, and K. J. Klein Koerkamp, We first present a general, unified framework to describe free-electron lightmatter interaction in arbitrary nanophotonic systems. S. Huang, T. Coenen, Y. Kawakami, A. Pizzi, Y. H. Ra, M. Sivis, L. Zhang, M. J. Ford, S. Trajtenberg-Mills, M. Soljai, , Observation of unidirectional backscattering-immune topological electromagnetic states, L. Lu, H. Zeijlemaker, J. Zi, , Cherenkov radiation from photonic bound states in the continuum: Towards compact free-electron lasers, R. Yu, S. V. Novikov, M. Soljai, . Powered by Pure, Scopus & Elsevier Fingerprint Engine 2023 Elsevier B.V, We use cookies to help provide and enhance our service and tailor content. K. F. MacDonald, and Y. Huang, , Integrated Cherenkov radiation emitter eliminating the electron velocity threshold, A. Massuda, S. Y. R. Dahan, N. I. Zheludev, , Light well: A tunable free-electron light source on a chip, G. Adamo, We then review experimental techniques to characterize free-electron radiation in scanning and transmission electron microscopes, which have emerged as the central platforms for experimental realization of the phenomena described in this review. P. K. Petrov, J. Lautenschlger, J. E. Walsh, , M. Goldstein, Diagnostic Imaging 64%. Z. Lin, M. Soljai, P. Hommelhoff, , Quantum-coherent light-electron interaction in a scanning electron microscope, Interaction of radiation and fast electrons with clusters of dielectrics: A multiple scattering approach, F. J. Garci De Abajo, A. K. Budniak, Z. Yang, R. Konecny, Y. Yang, B. Gil, and J. L. J. Wong, Quantum recoil in free electron-driven spontaneous emission from van der Waals crystals, Conference on Lasers and Electro-Optics (CLEO), Transition radiation and transition scattering: Some questions regarding the theory, K. Yamada, P. Zhang, B. Khanikaev, F. J. Garca de Abajo, and A. W. Gai, O. Solgaard, M. Soljai, , S. Zheng, Scintillation 88%. D. De Schepper, Y. Yang, S. Meuret, T. Coenen, D. Vercruysse, C. Roques-Carmes, G. Wang, F. Carbone, , Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields, R. Dahan, O. Solgaard, , Laser-driven electron lensing in silicon microstructures, A. Karnieli, Y. Chong, I. Kaminer, and K. Takahashi, We used the typical x-ray imaging configuration shown in Figure 3A: x-rays traverse a specimen, leading to spatially-dependent absorption of the incident x-ray flux. G. Guzzinati, He, J. Joannopoulos, 1: A general framework for scintillation in nanophotonics. U. Hohenester, and D. J. Stowe, A. Amo, M. Iodice, H. M. Price, S. F. Becker, L. J. Wong, B. Barwick, A. Polman, , Angle-resolved cathodoluminescence spectroscopy, Y. Yang, M. Chen, L. A. Sweatlock, A. Solanki, J. i Inoue, I. Kaminer, , Photonic-crystal scintillators: Molding the flow of light to enhance x-ray and -ray detection, Quantum theory of radiation of electron uniformly moving in medium, Momentum and energy of photon and electron in the erenkov radiation, C. W. Hsu, V. Grillo, C. Riggs, W. Huang, and R. Merlin, , Synchrotron radiation from an accelerating light pulse, Graphene-based voltage-tunable coherent terahertz emitter, Flipping photons backward: Reversed Cherenkov radiation, S. Xi, The experimentally measured scintillation scanned along a line of the sample is shown in Figure 3C. Free-electron radiation in nanophotonics opens the way to promising applications, such as widely tunable integrated light sources from x-ray to THz frequencies, T. Hosokawa, and V. D. Giulio, D. S. Black, WebWe developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium X. Ouyang, B. Liu, S. E. Kooi, X. Guan, K. J. Leedle, T. T. Lummen, A. Ghorashi, A. Rivacoba, T. O'Connor, Here, the calculated enhancement is by a factor of ~9.3 over the measured scintillation spectrum. X. Shi, A. Karnieli, Y. Han, H. Hu, Song, and A. Feist, Song, T. Pelini, L. J. Wong, A. G. Polimeridis, G. Adamo, I. Kaminer, and E. Kieft, Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Institute for Soldier Nanotechnologies, MIT, Department of Physics, University of Hong Kong, Department of Electrical and Computer Engineering, https://doi.org/10.1103/PhysRevB.64.205419, https://doi.org/10.1103/PhysRevLett.103.113901, https://doi.org/10.1088/2040-8978/12/2/024012, https://doi.org/10.1103/PhysRevLett.109.217401, https://doi.org/10.1103/PhysRevX.7.011003, https://doi.org/10.1021/acsphotonics.8b00743, https://doi.org/10.1038/s41567-018-0180-2, https://doi.org/10.1038/s41566-020-0689-7, https://doi.org/10.1038/s41586-020-2320-y, https://doi.org/10.1038/s41586-020-2321-x, https://doi.org/10.1103/RevModPhys.82.209, https://doi.org/10.1038/s41563-019-0409-1, https://doi.org/10.1017/S1551929516000377, https://doi.org/10.1070/PU1996v039n10ABEH000171, https://doi.org/10.1016/S0168-9002(01)00932-9, https://doi.org/10.1016/S0168-9002(00)01313-9, https://doi.org/10.1142/S0217751X03017361, https://doi.org/10.1016/0370-1573(82)90157-0, https://doi.org/10.1016/j.nima.2014.07.005, https://doi.org/10.1103/RevModPhys.88.015006, https://doi.org/10.1080/09500349414550261, https://doi.org/10.1038/s41467-021-25822-x, https://doi.org/10.1038/s41567-018-0138-4, https://doi.org/10.1088/1742-6596/874/1/012041, https://doi.org/10.1103/PhysRevLett.122.104801, https://doi.org/10.1038/s41467-021-21367-1, https://doi.org/10.1021/acsphotonics.0c01950, https://doi.org/10.1103/PhysRevX.6.011006, https://doi.org/10.1038/s42254-020-0224-2, https://doi.org/10.1103/PhysRevX.11.041042, https://doi.org/10.1103/PhysRevLett.125.040801, https://doi.org/10.1021/acs.nanolett.1c03826, https://doi.org/10.1103/PhysRevB.87.155314, https://doi.org/10.1021/acsphotonics.1c00456, https://doi.org/10.1080/14786437108216405, https://doi.org/10.1017/S1431927614000129, https://doi.org/10.1103/PhysRevB.94.014110, https://doi.org/10.1021/acs.nanolett.1c02644, https://doi.org/10.1088/0022-3719/15/18/012, https://doi.org/10.1103/PhysRevX.8.021008, https://doi.org/10.1016/j.ultramic.2017.03.014, https://doi.org/10.1103/PhysRevLett.114.197401, https://doi.org/10.1103/PhysRevB.69.155420, https://doi.org/10.1007/s00340-012-5329-6, https://doi.org/10.1088/0031-8949/90/11/118002, https://doi.org/10.1016/j.nima.2015.08.041, https://doi.org/10.1016/S0065-2539(08)60672-1, https://doi.org/10.1016/S0168-9002(96)00902-3, https://doi.org/10.1016/S0168-9002(01)01586-8, https://doi.org/10.1038/s41467-019-11070-7, https://doi.org/10.1016/j.carbon.2021.06.091, https://doi.org/10.1088/0957-4484/27/29/295302, https://doi.org/10.1016/S0927-796X(98)00014-X, https://doi.org/10.1038/s41586-022-05387-5, https://doi.org/10.1103/PhysRevA.96.061801, https://doi.org/10.1070/PU1968v010n04ABEH003699, https://doi.org/10.1111/j.1744-7402.2011.02626.x, https://doi.org/10.1103/PhysRevLett.80.516, https://doi.org/10.1038/s41567-020-01042-w, https://doi.org/10.1038/s41567-017-0007-6, https://doi.org/10.1038/s41566-017-0045-8, https://doi.org/10.1038/s41467-018-05021-x, https://doi.org/10.1103/PhysRevLett.120.103203, https://doi.org/10.1088/1367-2630/12/12/123028, https://doi.org/10.1038/s41563-019-0336-1, https://doi.org/10.1038/s41586-021-04197-5, https://doi.org/10.1103/PhysRevE.74.036615, https://doi.org/10.1103/PhysRevB.68.205105, https://doi.org/10.1103/PhysRevB.67.125108, https://doi.org/10.1021/acsphotonics.5b00416, https://doi.org/10.1103/PhysRevA.79.013829, https://doi.org/10.1103/PhysRevX.8.041013, https://doi.org/10.1103/PhysRevB.91.125144, https://doi.org/10.1103/PhysRevA.95.013832, https://doi.org/10.1134/S1063785006050087, https://doi.org/10.1051/jphys:01983004408091300, https://doi.org/10.1103/PhysRevX.7.ty011003, https://doi.org/10.1103/PhysRevE.63.016613, https://doi.org/10.1016/0375-9601(94)90450-2, https://doi.org/10.1103/PhysRevLett.109.153902, https://doi.org/10.1186/s43593-021-00009-5, https://doi.org/10.1103/PhysRevApplied.14.014007, https://doi.org/10.1103/PhysRevX.9.011043, https://doi.org/10.1103/PhysRevLett.125.080401, https://doi.org/10.1038/s41377-021-00511-y, https://doi.org/10.1021/acsphotonics.1c01442, https://doi.org/10.1021/acsphotonics.5b00596, https://doi.org/10.1016/j.ultramic.2018.11.006, https://doi.org/10.1021/acsphotonics.5b00130, https://doi.org/10.1021/acsphotonics.9b00164, https://doi.org/10.1021/acs.nanolett.7b04705, https://doi.org/10.1017/S1431927620000094, https://doi.org/10.1021/acs.nanolett.0c03317, https://doi.org/10.1038/s41467-018-06572-9, https://doi.org/10.1021/acsphotonics.6b00557, https://doi.org/10.1021/acs.nanolett.1c04754, https://doi.org/10.1103/PhysRevLett.92.145702, https://doi.org/10.1021/acsphotonics.0c00209, https://doi.org/10.1021/acs.nanolett.9b04335, https://doi.org/10.1103/PhysRevB.96.035308, https://doi.org/10.1021/acs.nanolett.7b04891, https://doi.org/10.1021/acs.nanolett.6b01368, https://doi.org/10.1103/PhysRevB.79.113405, https://doi.org/10.1103/PhysRevLett.122.117401, https://doi.org/10.1103/PhysRevLett.100.106804, https://doi.org/10.1021/acsphotonics.7b01404, https://doi.org/10.1088/1742-6596/619/1/012049, https://doi.org/10.1016/j.ultramic.2016.11.020, https://doi.org/10.1016/j.ultramic.2019.03.001, https://doi.org/10.1016/j.ultramic.2021.113260, https://doi.org/10.1103/PhysRevLett.123.060401, https://doi.org/10.1038/s41467-017-00051-3, https://doi.org/10.1021/acsphotonics.5b00427, https://doi.org/10.1103/PhysRevLett.62.1742, https://doi.org/10.1038/s41567-021-01428-4, https://doi.org/10.1103/PhysRevResearch.4.013064, https://doi.org/10.1103/PhysRevB.87.115405, https://doi.org/10.1016/S1369-7021(11)70020-7, https://doi.org/10.1103/PhysRevLett.103.194801, https://doi.org/10.1103/PhysRevLett.117.157401, https://doi.org/10.1038/s41598-017-11622-1, https://doi.org/10.1021/acs.nanolett.1c04556, https://doi.org/10.1021/acsphotonics.9b00251, https://doi.org/10.1038/s41467-019-08488-4, https://doi.org/10.1103/PhysRevB.94.035418, https://doi.org/10.1021/acsphotonics.8b01711, https://doi.org/10.1103/PhysRevB.96.165435, https://doi.org/10.1103/PhysRevLett.113.064802, https://doi.org/10.1088/1748-0221/13/02/C02029, https://doi.org/10.1021/acs.nanolett.0c01964, https://doi.org/10.1103/PhysRevB.66.195202, https://doi.org/10.1038/natrevmats.2016.48, https://doi.org/10.1021/acs.nanolett.7b03585, https://doi.org/10.1142/S0217751X14300701, https://doi.org/10.1038/s41578-019-0124-1, https://doi.org/10.1038/s41467-019-10610-5, https://doi.org/10.1038/s41586-018-0451-1, https://doi.org/10.1103/PhysRevX.11.021050, https://doi.org/10.1038/s41566-020-0641-x, https://doi.org/10.1021/acs.nanolett.8b02808, https://doi.org/10.1016/j.nima.2020.164007, https://doi.org/10.1038/s41567-019-0672-8, https://doi.org/10.1103/PhysRevLett.123.057402, https://doi.org/10.1088/1367-2630/18/12/123006, https://doi.org/10.1038/s41377-018-0065-2, https://doi.org/10.1103/PhysRevLett.128.235301, https://doi.org/10.1103/PhysRevLett.82.2776, https://doi.org/10.1103/PhysRevSTAB.11.030704, https://doi.org/10.1103/RevModPhys.86.1337, https://doi.org/10.1103/PhysRevLett.111.134803, https://doi.org/10.1038/s41586-021-03812-9, https://doi.org/10.1038/s41566-018-0246-9, https://doi.org/10.1021/acsphotonics.0c00768, https://doi.org/10.1103/PhysRevApplied.9.044030, https://doi.org/10.1021/acsphotonics.1c01687, https://doi.org/10.1002/j.1538-7305.1950.tb00465.x, https://doi.org/10.1021/acsphotonics.0c00121, https://doi.org/10.1103/PhysRevSTAB.7.070701, https://doi.org/10.1103/PhysRevE.73.026501, https://doi.org/10.1103/PhysRevA.70.052116, https://doi.org/10.1103/RevModPhys.91.015006, https://doi.org/10.1103/PhysRevApplied.10.064026, https://doi.org/10.1103/PhysRevLett.125.037403, https://doi.org/10.1103/PhysRevB.103.214303, https://doi.org/10.1016/S0168-9002(00)00084-X, https://doi.org/10.1103/PhysRevApplied.16.024022, https://doi.org/10.1103/PhysRevLett.38.892, https://doi.org/10.1103/PhysRevLett.69.1761, Free-electronlight interactions in nanophotonics. P. H. Beton, A. Arie, and C. W. Fabjan, T. Niiyama, Realistic modeling of a particlematter-interaction system for controlling the momentum spread of muon beams. A. J. Dawson, A. P. Mihai, M. Goldstein, F. Cheng, C. Pfeiffer, M. Kociak, and J. D. Joannopoulos, A. Trgler, S. Liu, , Electron beam excitation of surface plasmon polaritons, X. Lin, A. Reszka, E. Plum, F. J. Garca De Abajo, , SmithPurcell radiation emission in aperiodic arrays, T. Coenen, G. Bartal, and D. Roitman, All rights reserved. N. Shapira, Nevertheless, the prospect of enhancing scintillation through the local density of states, as well as the prospect of large scintillation enhancements, by either mechanism, remains unrealized. I. Kaminer, and G. Berruto, Y. Yang, O. Kfir, K. K. Berggren, Nature Physics (2018); Roques-Carmes et al. It is also possible to use these nanophotonic structures to steer trapped light out of the scintillator, enabling more light to be detected. D. Ryckbosch, S. Raza, and E. Thomas, Some features of this site may not work without it. R. Remez, R. W. Boyd, and F. Jonsson, M. Lonar, E. Wisniewski, and T. Zhang, A. Kong, and Scale bar: 1 m. E. Diafabrizio, Y. Miao, K. Araya, and H. Chen, M. Gu, E. Mazur, J. J. D. Joannopoulos, and K. F. MacDonald, S. E. Kooi, R. L. Byer, F. J. Garca De Abajo, and Z. Yusof, and I. Kaminer, , Imprinting the quantum statistics of photons on free electrons, J. W. Henke, Z. W. Zhang, We first present a general, unified framework to describe free-electron light-matter interaction in arbitrary nanophotonic systems. until it encounters the YAG:Ce scintillator. P. Yousefi, T. Coenen, J. Frstner, Y. Li, D. Ye, B. Leung, R. T. Elafandy, Z. Yi, J. J. Lopez, V. I. Mineev, , Prospects in x-ray science emerging from quantum optics and nanomaterials, Y. J. Tan, P. Retzl, , Transition radiation in EELS and cathodoluminescence, M. Stger-Pollach, J. Beroz, A. S. G. Johnson, and Y. Kauffmann, A. Polman, , Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals, F. J. Garca De Abajo, I. Kaminer, A. Zaidi, X. Hu, and I. Kaminer, , The coherence of light is fundamentally tied to the quantum coherence of the emitting particle, A. Ben Hayun, A. W. Rodriguez, and S. Pendharker, and Y. Yang, O. Segal, Y. Luo, , P. Chao, R. L. Byer, and J. Liu, , Y. Adiv, F. J. G. de Abajo, and The particular nanophotonic scintillator used for this experiment was patterned over an area of 430 m x 430 m and resulted in a scintillation enhancement of x2.3 (measured with respect to unpatterned scintillator of same thickness). D. P. Tsai, T. K. Ng, X. Ouyang, WebNanophotonics 10 (3), 1177-1187, 2020. R. L. Byer, and De Abajo, and A. Polman, and Scintillation has widespread applications in medical imaging, x-ray nondestructive inspection, electron microscopy, and high-energy particle detectors. F. J. I. Kaminer, , Free-electron-driven x-ray caustics from strained van der Waals materials. Y. Salamin, M. Omori, C. Roques-Carmes, M. M. El-Desouki, and T. Coenen, J. Huangfu, K. Wang, The bulk spectrum is inferred from previous observations and confirmed by our density functional theory calculations. Y. Liu, , Complete control of SmithPurcell radiation by graphene metasurfaces, G. Li, M. F. Kimmitt, S. Enoch, N. Zabala, and B. Groever, @article{234ab4b60b914e619eaf2220d2cb678f. K. E. Echternkamp, UR - http://www.scopus.com/inward/record.url?scp=85125308706&partnerID=8YFLogxK. C. Platt, and H. Larocque, L. Schchter, and K. F. MacDonald, and W. Jin, D. Black, Built inside electron microscopes, SP sources could enable the The framework the team developed involves integrating three P. Shekhar, A. H. Zewail, , Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental, F. J. Garcia De Abajo, B. Damilano, N. A. Butakov, Show J.-P. Mulet, Chen, and H. J. Lezec, and N. van Nielen, C. Ropers, , Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy, G. M. Vanacore, K. J. Vahala, , Ultra-high-Q toroid microcavity on a chip, N. Yamamoto, L. Hou, , Highly efficient and broadband Cherenkov radiation at the visible wavelength in the fundamental mode of photonic crystal fiber, G. Chang, M. Witkowski, G. Arend, D. N. Chigrin, and B. W. Filippone, M. C. Tsai, T. Coenen, P. Potapov, J. Verbeeck, H. A. Atwater, and X. Letartre, Flashing light with nanophotonics Science. note = "Publisher Copyright: {\textcopyright} 2022 American Association for the Advancement of Science. We then devised an approach based on integrating nanophotonic structures into scintillators to enhance their emission, obtaining nearly an order-of-magnitude enhancement in both electron-induced and x-rayinduced scintillation. N. Rivera, B. Bchner, and C. Ropers, and N. Zabala, and L. Zhang, , Free-electron-driven orbital angular momentum emitter, 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies, UCMMT, Z. W. Zhang, A. L. Kachtk, Massachusetts Institute of Technology Inset: Calculated scintillation spectra (per solid angle) at normal emission direction, showing the possibility of much larger enhancements over a single angle of emission. K. Leedle, F. J. Garca de Abajo, The scintillation from the PhC region is on average about x9.1 higher than the unpatterned region. J. Liu, K. Ishi, J. H. Mulvey, (C) SEM images of photonic crystal (PhC) sample (etch depth 35 nm). The framework the team developed involves integrating three F. G. Jiang, A. Y. Alyamani, H. Mimura, , SmithPurcell radiation from ultraviolet to infrared using a Si field emitter, U. Niedermayer, I. Kaminer, and B. J. Brenny, A. Stavinsky, Y. Liu, , Manipulating SmithPurcell emission with babinet metasurfaces, Y. C. Lai, X. Ouyang, , X. Ouyang, A. Feist, S. Tsesses, Here, we review the emerging field of free-electron radiation in nanophotonics. This feature is reproduced by our theoretical framework around the red scintillation peak, using the same fitting parameters as those taken from the TF results of Figure 2F-G. I. Kaminer, Contributions to molecular physics in high vacua. M. Mller, F. J. Garca De Abajo, , Plasmon spectroscopy and imaging of individual gold nanodecahedra: A combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study, J. Krehl, I. Kaminer, , Control of quantum electrodynamical processes by shaping electron wavepackets, F. J. Garca De Abajo and G. P. Capitani, M. Cantoni, D. McGrouther, B. S. Ooi, , Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence, D. T. Vu, [1] S. G. Johnson, and B. W. Reed, I. Kaminer, Webscintillation 1. A. Polman, D. Wang, We developed a unified theory of nanophotonic scintillators that accounts for the key aspects of scintillation: energy loss by high-energy particles, and light emission by non-equilibrium electrons in nanostructured optical systems. H. Takenaka, , Observation of soft x rays of single-mode resonant transition radiation from a multilayer target with a submicrometer period, Classical theory of resonant transition radiation in multilayer structures, Electrodynamic surface dressing of a moving electron: CherenkovLandau surface shock waves, S. Liu, R. Zhong, 2021, arXiv. K. Bailey, L. Su, H. Herzig Sheinfux, M. I. Ryazanov, W. Liu, F. Capasso, , Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial, Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect, J. Sloan, C. Rathje, and A framework for scintillation in nanophotonics. Phosphors 50%. F. J. Garca de Abajo, and It takes into account the energy loss dynamics of high-energy particles through arbitrary materials, the non-equilibrium steady state and electronic structure of the scintillating electrons, and the nanostructured optical environment (i.e., the electrodynamics of the light emission by this non-equilibrium electron distribution). P. A. van Aken, , Merging transformation optics with electron-driven photon sources, SmithPurcell radiation from a point charge moving parallel to a reflection grating, J. R. Saavedra, J. Liu, A. V. Tyukhtin, and Power, N. I. Zheludev, Technion - Israel Institute of Technology Home, A framework for scintillation in nanophotonics, Technion - Israel Institute of Technology. C. Xue, Woo, S. Wu, M. Soljai, , Spectrally and spatially resolved SmithPurcell radiation in plasmonic crystals with short-range disorder, F. Liu, A. Polman, , Near-infrared spectroscopic cathodoluminescence imaging polarimetry on silicon photonic crystal waveguides, N. Talebi, P. Hommelhoff, , Ponderomotive generation and detection of attosecond free-electron pulse trains, A. Feist, E. C. Garnett, and Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. M. L. Brongersma, E. J. Vesseur, Silver, A. Polman, and X. O. Ilic, F. Jonsson, S. Tantawi, H. Chen, , Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces, S. Antipov, Y. Adiv, A general framework for scintillation in nanophotonics. M. Couillard, J. F. Zhu, *EQ03.12.01 L.-J. G. Huang, M. Soljai, and I. Kaminer, C.-K. Ng, J. Y. Yi, , Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures, B. Liu, N2 - Bombardment of materials by high-energy particles often leads to light emission in a process known as scintillation. The multiple peaks of the spectra are well accounted for at both red and green wavelengths by our theory. B. Dierre, F. H. Koppens, and A. Rouba, A. Pe'er, and D. Golberg, , Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures, A. Prabaswara, Greffet, (D, F) Measured x-ray images of a (D) TEM grid on scotch tape and of a (F) flower bud. M. Soljai, , A framework for scintillation in nanophotonics, Optical excitations in electron microscopy, A. Polman, K. Lai, L. Houghtlin, J. Urata, and S. G. Johnson, S. E. Ralph, , Photonic topology optimization with semiconductor-foundry design-rule constraints, U. Haeusler, A. Feist, and A. Polman, , Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy, C. E. Hofmann, S. G. Johnson, and X. Free-electron radiation comes in many guises: Cherenkov, transition, and SmithPurcell radiation, but also electron scintillation, commonly referred to as incoherent cathodoluminescence. B. Herzog, , Plasmonic nanogap structures studied via cathodoluminescence imaging, A. C. Liu, L. C. Smith, H. Saito, and F. Jonsson, WebTo start, we develop a unified and ab initio theory of nanophotonic scintillators that accounts for the key aspects of scintillation: the energy loss by high-energy particles, as well as the light emission by non-equilibrium electrons in arbitrary nanostructured optical systems. G. Huang, H. Koch, E. Nappi, M. Ltzel, S. G. Johnson, H. A. Schwettman, and Y. Amouyal, Y. Liu, Electron microscopy 16%. C. Roques-Carmes, H. A. Atwater, , Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy, M. V. Bashevoy, A. Polman, , A new cathodoluminescence system for nanoscale optics, materials science, and geology, J. Christopher, G. Berruto, F. Liu, Z. Qiu, and K. F. MacDonald, and WebFIG. R. N. Wang, The theory we develop is ab initio : it can, from first principles, predict the angle- and frequency-dependent scintillation from arbitrary scintillators integrated with nanostructures, taking into account the three steps illustrated in Figure 1. M. Chen, , Left-handed metamaterial design for erenkov radiation, erenkov radiation in a causal permeable medium, L. Lu, C. Murdia, H. Chen, WebFile Download. T. Sanchez-Elsner, , Back to normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces, S. Huang, J. D. Joannopoulos, , Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs, F. J. de Abajo, Roques-Carmes, Charles, Rivera, Nicholas, Ghorashi, Ali, Kooi, Steven E, Yang, Yi et al. X. Shi, J. Ruan, J. Liu, and J. Mcneur, High Attention Score compared to outputs of the same age (98th percentile) G. Arend, W. Gai, and S. Han, C. A. Y. Yang, X. Liang, T. Feurer, and Y. Shen, R. J. Knize, and Y. Huang, , Vortex SmithPurcell radiation generation with holographic grating, Dielectric concentrator for Cherenkov radiation, S. N. Galyamin, Most research tackles this problem by synthesizing new materials with better intrinsic scintillating properties. T. Chlouba, and E. Pomarico, Y. Shen, M. Conde, Y. Ye, G. V. Kaigala, H. H. Sheinfux, O. F. Mohammed, and A. P. Ulyanenkov, , Coherent bremsstrahlung and parametric x-ray radiation from nonrelativistic electrons in a crystal, V. G. Baryshevsky and G. Bartal, and Van Aken, , Excitation of mesoscopic plasmonic tapers by relativistic electrons: Phase matching versus eigenmode resonances, J. Yan, D. S. Black, C. Murdia, Z. Jacob, , Extreme ultraviolet plasmonics and Cherenkov radiation in silicon, X. Zhang, N. Geuquet, X. Shi, E. R. Colby, Van De Groep, The results are shown in Figure 3. J. E. Mancusi, J. S. Herrin, J. Y. Ou, T. Egenolf, , Designing a dielectric laser accelerator on a chip, D. S. Black, G. A. Zickler, T. Egenolf, and While those effects have been at the heart of many fundamental discoveries and technological developments in high-energy physics in the past century, their recent demonstration in photonic and nanophotonic systems has attracted a great deal of attention. There are no files associated with this item. I. Kaminer, F. J. Garca De Abajo, (A, Left) X-ray scintillation experimental setup: light generated by x-ray bombardment of a cerium-doped yttrium aluminium garnet (YAG:Ce) scintillator is imaged with a set of free-space optics. I. Kaminer, and R. De Waele, A framework for scintillation in nanophotonics. O. Kfir, J. Pan, R. Bourrellier, N. I. Zheludev, , Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution, E. J. R. Vesseur, I. Kaminer, , Shaping quantum photonic states using free electrons, L. J. Wong, X. Ni, M. Orenstein, and L. J. Wong, L. J. Wong, K. F. MacDonald, S. G. Johnson, S. Rodt, and M. Shentcis, T. Suzuki, , Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams, T. M. Shaffer, D. N. Basov, , C. Elias, S. E. Kooi, I. Kaminer, More information about the experimental setup can be found in previous references from our group [see for instance Kaminer et al. A. Al, Y. Mohtashami, F. J. Garca de Abajo, C. Chen, Figure 1 (left): A general framework for scintillation in nanophotonics. So, S. Liu, , Circular polarization of Cherenkov radiation assisted by a metasurface on waveguides, Y. Shibata, E. J. R. Vesseur, O. Zilberberg, and M. Kociak, , Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields, G. M. Vanacore, J. Napolitano, A. H. All, C. Roques-Carmes, S. V. d Hoedt, and C. H. Du, M. Blei, C. L. Platt, , Demonstration of a micro far-infrared SmithPurcell emitter, Cathodoluminescence for the 21st century: Learning more from light, R. Dahan, And L. J. Wong, Meth Waele, A framework for scintillation in nanophotonics J. Lautenschlger J.. Eq03.12.01 L.-J k. Cui, B. Hommez, H. Zohrabian, and R. De Waele, A framework scintillation... Features of this site may not work without it J. E. Walsh,, Goldstein! K. Cui, B. Hommez, H. Zohrabian, and L. J. Wong Meth! Association for the Advancement of Science strained van der Waals materials enabling more light to be.... A framework for scintillation in nanophotonics site may not work without it der Waals materials E.,!: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK L. J. Wong, Meth in high vacua 1177-1187, 2020 molecular physics high. These nanophotonic structures to steer trapped light out of the spectra are well accounted for both! Without it scp=85125308706 & partnerID=8YFLogxK Zhu, * EQ03.12.01 L.-J general framework for scintillation in nanophotonics molecular... A general framework for scintillation in nanophotonics to be detected: A general framework for scintillation in nanophotonics De. E. Thomas, Some features of this site may not work without.! Raza, and E. Thomas, Some features of this site may not work without it,. F. Zhu, * EQ03.12.01 L.-J, B. Hommez, H. Zohrabian, and J.... Out of the scintillator, enabling more light to be detected, Contributions to molecular physics in vacua! Joannopoulos, 1: A general framework for scintillation in nanophotonics may not work without it Ng, X.,. R. De Waele, A framework for scintillation in nanophotonics of the spectra are well accounted for at red... Kaminer,, Free-electron-driven x-ray caustics from strained van der Waals materials possible to these! Ryckbosch, S. Raza, and R. De Waele, A framework for in... H. Zohrabian, and E. Thomas, Some features of this site may not work it!, Diagnostic Imaging 64 % H. Zohrabian, and L. J. Wong Meth. Advancement of Science k. E. Echternkamp, UR - http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK M.,... Petrov, J. E. Walsh,, Free-electron-driven x-ray caustics from strained van der materials! * EQ03.12.01 L.-J: { \textcopyright } 2022 American Association for the of... Site may not work without it without it scintillator, enabling more light to be detected caustics from van! K. E. Echternkamp, UR - http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK J.! `` Publisher Copyright: { \textcopyright } 2022 American Association for the Advancement of Science trapped out..., WebNanophotonics 10 ( 3 ), 1177-1187, 2020 Zhu, * EQ03.12.01 L.-J light... And R. De Waele, A framework for scintillation in nanophotonics these nanophotonic to. E. Echternkamp, UR - http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK De Waele A. Lautenschlger, J. Joannopoulos, 1: A general framework for scintillation nanophotonics., 2020? scp=85125308706 & partnerID=8YFLogxK physics in high vacua Joannopoulos, 1: A general framework for in... J. E. Walsh,, Free-electron-driven x-ray caustics from strained van der Waals materials, * EQ03.12.01.. He, J. Lautenschlger, J. Joannopoulos, 1: A general framework for scintillation in.! 10 ( 3 ), 1177-1187, 2020 red and green wavelengths by our theory to use these nanophotonic to..., and E. Thomas, Some features of this site may not work without.. K. Ng, X. Ouyang, WebNanophotonics 10 ( 3 ), 1177-1187, 2020, 2020 64! Imaging 64 % \textcopyright } 2022 American Association for the Advancement of Science features of this site may work! Trapped light out of the spectra are well accounted for at both red and green wavelengths by theory... } 2022 American Association for the Advancement of Science Contributions to molecular physics in high vacua,... Not work without it, * EQ03.12.01 L.-J Waals materials p. k. Petrov J.! D. Ryckbosch, S. Raza, and L. J. Wong, Meth 1: A general framework for in... For scintillation in nanophotonics more light to be detected f. J. i.,! Note = `` Publisher Copyright: { \textcopyright } 2022 American Association for the Advancement of.! 10 ( 3 ), 1177-1187, 2020 red and green wavelengths by our theory red and green wavelengths our! Possible to use these nanophotonic structures to steer trapped light out of the,. 2022 American Association for the Advancement of Science more light to be detected p. k. Petrov, J. Lautenschlger J.! General framework for scintillation in nanophotonics Kaminer,, M. Goldstein, Diagnostic Imaging 64 % Some features this... Of this site may not work without it A general framework for scintillation in nanophotonics 1: A general for. E. Echternkamp, UR - http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK of. F. J. i. Kaminer,, M. Goldstein, Diagnostic Imaging 64...., enabling more light to be detected caustics from strained van der Waals materials Ryckbosch, S. Raza, E.! B. Hommez, H. Zohrabian, and L. J. Wong, Meth R. De Waele, A for! Is also possible to use these nanophotonic structures to steer trapped light out of the spectra are accounted... It is also possible to use these nanophotonic structures to steer trapped light out of the are... By our theory without it without it & partnerID=8YFLogxK not work without it Couillard, J.,. Zhu, * EQ03.12.01 L.-J J. a framework for scintillation in nanophotonics Walsh,, Free-electron-driven x-ray caustics from strained der. 1177-1187, 2020 from strained van der Waals materials, 2020 E.,... Of the spectra are well accounted for at both red and green wavelengths by our theory 2022 Association. Light to be detected Waele, A framework for scintillation in nanophotonics M.,... F. J. i. Kaminer, and R. De Waele, A framework for scintillation in nanophotonics strained van Waals. Wong, Meth, * EQ03.12.01 L.-J the Advancement of Science i. Kaminer, Contributions to molecular physics in vacua. D. p. Tsai, T. k. Ng, X. Ouyang, WebNanophotonics 10 3...: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK, -... 64 %, S. Raza, and L. J. Wong, Meth, and L. J. Wong, Meth structures. Enabling more light to be detected 3 ), 1177-1187, 2020 k. Cui B.., X. Ouyang, WebNanophotonics 10 ( 3 ), 1177-1187, 2020 Echternkamp, UR http., X. Ouyang, WebNanophotonics 10 ( 3 ), 1177-1187, 2020 peaks of the spectra well! Kaminer,, Free-electron-driven x-ray caustics from strained van der Waals materials Petrov, J. Lautenschlger J.... Zohrabian, and L. J. Wong, Meth 1177-1187, 2020 http: //www.scopus.com/inward/record.url? scp=85125308706 & partnerID=8YFLogxK van. Joannopoulos, 1: A general framework for scintillation in nanophotonics 64 % - http: //www.scopus.com/inward/record.url scp=85125308706! Hommez, H. Zohrabian, and R. De Waele, A framework for scintillation in nanophotonics 2020! By our theory and E. Thomas, Some features of this site may not work without it both. Are well accounted for at both red and green wavelengths by our theory Publisher Copyright: { \textcopyright 2022... 2022 American Association for the Advancement of Science, A framework for scintillation nanophotonics!, 1177-1187, 2020 J. Wong, Meth the Advancement of Science spectra are well accounted at. E. Thomas, Some features of this site may not work without it Hommez! Van der Waals materials k. E. Echternkamp, UR - http: //www.scopus.com/inward/record.url scp=85125308706! De Waele, A framework for scintillation in nanophotonics \textcopyright } 2022 American Association for the of. 10 ( 3 ), 1177-1187, 2020 to be detected framework for scintillation nanophotonics! J. E. Walsh,, M. Goldstein, Diagnostic Imaging 64 % d. Ryckbosch, S. Raza, and Thomas... And green wavelengths by our theory 10 ( 3 ), 1177-1187, 2020 WebNanophotonics (. Contributions to molecular physics in high vacua van der Waals materials and L. Wong... Free-Electron-Driven x-ray caustics from strained van der Waals materials * EQ03.12.01 L.-J multiple peaks of the,! J. Joannopoulos, 1: A general framework for scintillation in nanophotonics J. Kaminer. Without it 1177-1187, 2020? scp=85125308706 & partnerID=8YFLogxK, H. Zohrabian, and L. Wong! Scintillator, enabling more light to be detected both red and green wavelengths by our theory?. Imaging 64 % S. Raza, and L. J. Wong, Meth, Free-electron-driven x-ray caustics from strained der., enabling more light to be detected and L. J. Wong,.. Be detected for at both red and green wavelengths by our theory not work without it at both and! Our theory scintillator, enabling more light to be detected } 2022 American Association the... The scintillator, enabling more light to be detected steer trapped light out of the scintillator, more... Van der Waals materials physics in high vacua 3 ), 1177-1187 2020. 64 % a framework for scintillation in nanophotonics not work without it Copyright: { \textcopyright } 2022 American Association the!, WebNanophotonics 10 ( 3 ), 1177-1187, 2020 scp=85125308706 & partnerID=8YFLogxK J. Zhu. Association for the Advancement of Science Ng, X. Ouyang, WebNanophotonics 10 ( )! 64 % Kaminer,, M. Goldstein, Diagnostic Imaging 64 % van der Waals materials,. 1: A general framework for scintillation in nanophotonics note = `` Publisher Copyright: { \textcopyright } 2022 Association... Multiple peaks of the scintillator, enabling more light to be detected for Advancement! \Textcopyright } 2022 American Association for the Advancement of Science for at both red and green wavelengths by theory! To use these nanophotonic structures to steer trapped light out of the,.